ADO08

A Journeyman’s Reference: The Writing for Reading SAS Style Sheet:
Tricks, Traps, Tips, and Templates, from SAS-L’s Macro Maven

Ronald Fehd, Centers for Disease Control and Prevention, Atlanta GA

ABSTRACT

A program is a form of communication that occurs in two
distinct and vastly different events: the first event is immedi-
ate, when the program is submitted to the language processor
for execution; the second event takes place at a later time,
when the writer or another programmer returns to read that
program for maintenance. A good style sheet can facilitate
program maintenance. This is especially important when si-
multaneously writing in two languages: SAS and its macro
language. This paper discusses elements of a style sheet for
SAS programmers. The intended audiences are intermediate
SAS programmers and beginning macro programmers.

INTRODUCTION

Writing is a method of transmitting information. Reading is
necessary in order to acquire that information. When pro-
gramming, once the algorithm is decided upon and written
well enough to execute, the next step is to visually format the
programming language statements so that a later reader can
both understand the algorithm and quickly and easily find pro-
gram statements to be changed. | have developed the Writing
for Reading (W4R) SAS Style Sheet during the decade that |
have been writing SAS programs and macros.

Baecker and Marcus[2] point out that " [s]everal million indi-
viduals are now writing programs . . . They are also reading
programs, either those that they themselves have previously
written or those that others have written . The activ-
ity of reading programs has always received far less attention
than that of writing programs. We teach students how to
write programs, but not how to read them. We build tools to
facilitate program composition and editing but not program
perusal, browsing, and understanding. Those designing new
programming languages have focused on logical syntax and se-
mantics, as well they should, but have typically ignored visual
syntax and semantics, i.e., program presentation and appear-
ance . . . Enhanced program presentation produces listings
that facilitate the reading, comprehension, and effective use
of computer programs . . . We believe . . . [that] Making
the interface to a program’s source code and documentation
intelligible, communicative, and attractive will ultimately lead
to significant productivity gains and cost savings.”

While writing SAS and macro language together | keep in
mind the following thoughts:
* Know what you're doing.

* Know where you're at.

* Know where you're going.

* Facilitate later reading.

Tip: Know what you're doing: Number-crunching or
string-processing? SAS is a number-crunching language,
while the SAS macro language is an extension of SAS that
facilitates both extension and encapsulation. Programmers
know the paradigm of number- crunching; becoming familiar
with the string-processing capabilities of both SAS and the
macro language can be a challenge because of the different
set of functions used, the different paradigm, and last, but
not least, because the macro processor is a preprocessor for
the SAS language.

SAS crunches numbers; macros generate strings. Strings can
be tokens, statement phrases, complete statements, or para-
graphs consisting of many related statements. Writing macro
statements is about writing correct SAS statements, which is
why | recommend that you be an intermediate SAS program-
mer before starting to write macros. Know SAS well before
attempting to write macros, which write SAS for you. Two
years or 10,000 statements, whichever comes first!

Review SAS character functions in chapter 11 of SAS Lan-
guage Reference[4]: compress, index, indexc, input, left,
put, repeat, reverse, right, scan, substr, translate, trim, ver-
ify, call label, call symput, call vname. Do your own test-
ing and become familiar with SAS string-processing. Then
go through the various macro manuals — SAS Guide to
Macro Processing[3], SAS Macro Facility Tips and Tech-
niques [5] SAS Macro Language Reference[6], and recognize
which SAS functions are in the macro language. The main
ones: Ycompress, %index, Y%scan, %substr. Do some
more testing. Comprehend the difference between SAS func-
tion int and macro functions %eval, and %sysevalf.

As you write SAS statements and macros which produce SAS
statements, name and remember what you expect:

* paragraph: many statements between step boundaries

* block: keyword + statements + closure, e.g., do; ... end;

* statement: keyword + tokens + closure
* phrase: part of a statement, may be several tokens

* gyllable: part of a token, e.g., prefix, infix, or a suffix

Tip: Know where you're at: SAS or macro? Switch-
ing gears — and paradigms — while thinking and then writing is
some days an art and other days a science. There are a num-
ber of visual aids which have helped me in my career that |
recommend. Baecker and Marcus|2] discuss their research on
effective layout of computer language manuals. | draw many
ideas from them, but am necessarily constrained by having to
work with a simple text processor, thus the style sheet below.

Tip: Know where you're going: List process-
ing: Object-Oriented Programming (OOP) The OOP
paradigm has helped me immensely in my programming as |
have become accustomed to it in the last several years. When
| graduated from college, | knew both number-crunching lan-
guages and list-processing languages. When | met SAS, |
remembered procedures and functions, and whined with the
rest of SAS-L about not having any way to write functions in
SAS.

Procedures make way for OOP’s methods. You'll need to
know your data and, more importantly, your meta-data, i.e.,
it's structure, in order to work in OOP. Read the SAS Pro-
cedures Guide(1990) and familiarize yourself with proc CON-
TENTS and its output data set. This knowledge is key for the
meta- programming that | do in the macro language. While
you're at it, do a CONTENTS on the output data sets from
other procedures, like FREQ, MEANS, and UNIVARIATE and
whatever others you regularly use. Data sets? In OOP these
are objects; prepare to juggle them and write methods for
them.

Tip: KIS: Keep It Simple! | do 95% of my work with these
dozen macros, listed below. The number of lines is approx-
imate, it includes SAS and macro statements, and excludes
comments. The last note is year written and last maintenance
date.

name action lines —dates—
utility

Array returns macro array 40 1994:97

MemNames returns macro array 30 1997:98

Nobs returns obs of data set 10 1991:99
data review

ComparWS list differences 140 1992:98

FreqoSSD freq of all variables 130 1990:98

Invalid lists invalid values 300 99:2002
summary

CheckAll returns FREQ object 140 1992:99

FreqlVar returns FREQ object 110 1998:99

FreqXTab returns FREQ object 130 1999:00
ShowComb returns FREQ object 320 1992:99
SmryPrnt lists FREQ objects 120 1996:99
Univari8 returns UNIVARIATE 50 1998:99

My point here is that good utilities are constantly being im-
proved. Most are small, and are built of smaller routines.

Tip: Facilitate later reading. Get a style sheet.
Use it, consistently.

The Writing for Reading SAS Style Sheet

Tip: Know what you’re doing: SAS or macro

To differentiate SAS language from macro language, type SAS
statements in lowercase and macro statements in UPPER-
CASE. Macro variables are global variables, that is, they exist
across SAS step boundaries, just like SAS titles and options.
Use of different case reminds you what you're doing.

Use all caps, mixed case, and lowercase to visually communi-
cate. ¥ ALL CAPS: global constants: TITLE, OPTIONS, etc.
macro language and macro variables data set names, filerefs,
librefs. * Upper and Lowercase: variable names. * lowercase:
SAS language keywords.

Tip: Know what you’re doing: control, conditional
or closure Consider these three categories of statements:

1. control statements, unconditionally executed
2. conditionally executed

3. closure

As illustrated below, the purpose of this style sheet is to fa-
cilitate two visual actions that occur in maintenance: first,
scanning, then reading.

What is the first thing | know about a program that | want
to improve? It works! The first thing | don't care about is
closure: end statements and some semicolons. Place these at
the right margin, out of the way. The next thing | know is that
| want to change either a control statement or a conditionally
executed statement. Thus, separate columns for these two
different categories of statements.

Tip: Show what you're doing by placement on the
page:

1. left: control

2. center: conditionally executed

3. right: closure

Use indentation of three space. See the data step example be-
low. Larger indentations push the control statements across
the page.

Documenting closure. For innermost block, none; for each
preceding level: a copy of control statement’s keyword.

Avoid Traps with these Tips:

WA4R: Know what you’re doing: string-processing.

feature: macro language is simple: NULL is empty
factoid 1: list of mnemonics for comparison operators
AND OR NOT EQ NE LE LT GE GT

factoid 2: two-letter state abbreviations:

OR:Oregon, NE:Nebraska

Trap: OREGON will bite you!
*not good:;%IF &STATE. = OR JTHEN

*consider this;
%IF &STATE = <null> OR <condition-2> \)THEN ...

Tip: always quote strings in comparisons
%IF "&STATE." = "OR" %THEN ...

WA4R: Know where you’re at: SAS or macro

Trap: run-on statements: not enough semicolons; can't tell
difference between SAS semicolon and macro semicolon?:

expected: TITLE1 <state name>; TITLE2 <date-stamp>;

TITLE1

%IF "&STATE." = "AL" %THEN Alabama ;

TITLE2 Ysysfunc(date() ,weekdatel7.);

result: TITLE1 "Alabama TITLE2 Mon, Nov 1, 1999";

The confusion comes in seeing the semicolon after " Alabama”
as the closure of the TITLEL statement, when it is the closure
of the macro

Tip: always use %D0; <...> %END;

TITLE1
%IF "&STATE." = "AL" %THEN JD0; Alabama 7%END;
%*end TITLE1; ;

Here it is clear that the macro statement returns only a single
token with no closing semicolon.

WA4R: Know where you’re at: SAS or macro

Trap: one dot is not enough! | can’t tell the difference be-
tween a SAS dot and macro dot.

Old code : %LET DATA = DATA_A; LIBRARY.&DATA
Improvement: add LIBRARY as a macro variable:

%LET LIBRARY=LIBRARY;

New code doesn't work: &LIBRARY.&DATA resolves to
LIBRARYDATA_A

Why? Dot changes from a two-level name delimiter to a mac-
var delimiter.

Tip: always use macro delimiters: ampersand and dot
Use snake-eyes in two-level names, formats, and filenames.

'Wrong! . correct..
&LIBRARY.&DATA. &LIBRARY. .&DATA.
$char&WIDTH. $char&WIDTH. .
&FILENAME. sas &FILENAME. .sas

WA4R: Know what you’'re doing;
remember what you did.

Trap: many ad hoc reports

Tip: recognize patterns, write a general solution.

Write SAS twice before writing macro once. recognize pat-
terns, write specific solution first, and again, then write a
general solution. Pattern recognition is key.

WA4R: Know what you're doing: manage complexity

Trap: large macro, with no complexity

Macro complexity is zero if there are no %IF and no %DO loops.
If your SAS statements contain only macro references and no
conditional execution nor loops of any statements consider
using a parameterized %include file. Instead of:

%macro PRNT(DATA); PROC PRINT data = &DATA.;
TITLE "&DATA."; run; %MEND;

Tip: use global macro variables with %include

————— PRNT.sas - - - -
proc PRINT data = &DATA.;
TITLE "&DATA.";run;

- - - - end PRNT.sas - - - -
----- callPRNT.sas - - - -
filename PRNT "path to:PRNT.sas";
%LET DATA = DATA1;

*LET DATA = DATA2;
%include PRNT;
————— end callPRNT.sas - - - -

To run the program enable the /LET statement with the de-
sired data set name.

Trick: conditional execution of %includes

The %include statement, despite its percent sign, is not a
macro statement, and is always executed in SAS; though it
can be conditionally executed in a macro. Here is a simple
trick that shows a macro variable being used to generate a
syllable — the suffix — of a token, in this case a fileref. To run
the program and %include FileB, enable the second %LET
statement by changing asterisk to percent.

filename FILEA "c:\sas\fileA.sas";
filename FILEB "c:\sas\fileB.sas";
%LET WHICH = A;
*LET WHICH = B;

data;

*replace this:

if "&WHICH." = "A" then %include FILEA;

else if "&WHICH." = "B" then Y%include FILEB;
*with this;

%include FILE&WHICH.;

Templates: no writing, just cut&paste

Hanging Indent is a paragraph style with the first line flush
left to the margin and succeeding lines indented. | use
this style to illustrate the concept, which is the basis
of my programming templates. The SAS editor, and
other well-known text editors, indent succeeding lines
to the same level as the previous line.

Music. Programming and music share a common skill set:

1. Pattern recognition.
2. Sequential processing.

3. Symbol manipulation.

Templates. Patterns occur everywhere in our experience.
The essence of a pattern is not what is obviously hap-
pening but its similarity to some previous event. Tem-
plates are reusable instances of patterns previously rec-
ognized.

Natural language, such as English, is a spoken as well as
written means of communication. We learn a natu-
ral language in four steps: listening, speaking, read-
ing, then writing. We practice each of these abilities
and perfect them through a continual process of recep-
tion and reproduction. Consciously or unconsciously,
between reception and reproduction is the hindsight of
the pattern recognition process and the foresight of our
personal template refinement.

Syntax. The English sentence pattern contains three ele-
ments: subject, verb, and object.

Artificial language is used to communicate with a machine.
An artificial language can be used to convey a series
of instructions, e.g., using a touch tone telephone, or
a VCR remote control. SAS, like other computer lan-
guages, has no need of a subject in its statements.
Every declarative sentence is addressed to the mythical
computer, whether on our desktop or in a room some-
where else. The Department of Redundancy Reduction
Dept. has decided to eliminate computer as the subject
of artificial language statements.

Keywords. Elimination of subject reduces our artificial lan-
guage template to verb and object. How many of us
are still trying to comprehend the object oriented pro-
gramming paradigm in SAS? Here's the clue: keywords
are verbs, in the sense that a keyword acts upon the
following words as objects.

Sequence. Order is important. In rhetoric we state our as-
sumptions first. In programming we describe the global
environment, then the local.

Symbol. Each programming step has these processes: decla-
ration, description, and manipulation. In the data step
manipulation consists of two interrelated processes:
control and conditionally executed statements.

Switch. Which template are you using when you write SAS?
Do your statements begin with a capital letter and end
with a period? Are statements separated from each
other by two spaces? Are collections of statements
known as paragraphs separated by a blank line, or a
new line and paragraph indent of five spaces? Do your
paragraphs begin with topic sentences and end with
transition sentences? Consider whether your audience
is reading a natural language or an artificial language.

Badness. SAS typed as English. Statements begin with Ini-
tial caps and are separated by two spaces. Paragraphs
are indented five spaces. SAS is written as deathless
prose. Can it get any worse? When we wish to debug
or maintain we have to read every word. A good pro-
gram should be easy to maintain because of the style
in which it is written. The Maintenance Programmer
should not have to read nor understand the whole pro-
gram, just the section that needs work. See Aster[1].

Goodness. The Writing for Reading SAS Style Sheet reminds
you that you are about the business not of reading the
whole program, but of scanning to a section, then fo-
cusing on that step in the process. A step is a state-
ment is a verb. We want to find the verbs quickly.
Order is important, placement is important, sequence
is important. White space enhances order, placement,
and sequence.

Templates, for data step, procedure, and macro, using the three template verbs: declare, describe, manipulate.

SAS declarative statements

Declare : 01 DATA DATANAMEl1l (<optiomns>); 01

Describe : 02 attrib VarA length = $8 format = $formatName. 02
03 label = ’var label’; 03
04 set LIBRARY.PREVIOUS 04
05 by Var; 05

Manipulate: SAS executable statements

control statements conditionally executed closure

10 if conditionl then assignment; 10
11 if condition2 then do; 11
12 do I =1%o 2; 12
13 do J =1 to 2; assignmentl; 13
14 assignment?2; 14
15 end; 15
16 Y%xdo I; end; 16
17 %*if condition2; end; 17
18 run; 18

lines 11:13 three
12:13 align
lines 15:18 15 is
16:17 close

notes: space indent,

similar construction to highlight different indexes.
closure for do in line 13, no comment since it is inner block
outer blocks 12 and 11, thus they have comments and closure on right.

Manipulate:

declare 1:
describel:

declare 2:
describe2:

manipulate:

01
02
03
04
05
06
07
08

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

90
91
92
93
94
95
96

Declare Describe

proc FREQ data = LIBRARY.WHATEVER
(where = (<subset selection>))
by varl ;
tables varlist
/ list missing noprint
out = WORK.FREQ
;/* macro MAINVERB describe purpose
USAGE: for cut and paste into a calling program

#MAINVERB(SUB_VERB1 = value
,SUB_VERB2 = value
);
ZMAINVERB(DATA = DATANAME1
,WHERE = VarA eq 2
,O0UT = SAVETHIS
);
KKK e e e */
Ymacro MAINVERB
(SUB_VERB1 = /*parameter 1 description NOTE: all parameters are named */
,SUB_VERB2 = /#parameter 2 description no positional parameters */
,DATA = /*one- or two-level data set name */
,WHERE = /*subset? */
,0UT = /#name of output data set, also: returned object */
,TESTING = O/*want TESTING messages printed? */
)5
DATA X;
set &DATA.(
where=(&WHERE.)
)5
%IF &TESTING %THEN %DO; proc PRINT data = X;
title "data X"; run;%END;
FEXIT: TUL % v it e et ittt ettt et e e *; JMEND;
/* TEST DATA s#kkkkkkkkkx sxkkkkkkk*k**to enable end this line w/slash #**

%MACRO-NAME (DATA =X
,0UT =Y
,TESTING = 1
)
2 */

01
02
03
04
05
06
07
08

01
02
03
04
05
06
o7
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

90
91
92
93
94
95
96

CONCLUSION

Once a program is written it will have to be read. Ease of
reading facilitates maintenance. Templates facilitate a uni-
form program style. A style sheet helps differentiate between
SAS and the macro language. Using mnemonics facilitates
ease of reading. Get a style sheet; use it, consistently; you'll
be glad you did.

REFERENCES

[1] Rick Aster, (1998), Coding for Posterity, Proceedings of
the Eleventh Annual NESUG Conference

[2] Ronald M. Baecker, Aaron Marcus, (1990), Human Fac-
tors and Typography for More Readable Programs, ACM
Press, Addison- Wesley Publishing Company, ISBN 0-
201-10745-7

[3] SAS Institute Inc. (1990), SAS Guide to Macro Process-
ing, Version 6, Second Edition, Cary, NC: SAS Institute
Inc.

[4] SAS Institute Inc. (1990), SAS Language Reference, Ver-
sion 6, First Edition, Cary, NC: SAS Institute Inc.

[6] SAS Institute Inc. (1994), SAS Macro Facility Tips and

Techniques, Version 6, First Edition, Cary, NC: SAS In-
stitute Inc.

[6] SAS Institute Inc. (1997), SAS Macro Language Refer-
ence, First Edition, Cary, NC: SAS Institute Inc. catalog
55501

[7] SAS Institute Inc. (1990), SAS Procedures Guide, Version
6 Third Edition, Cary, NC: SAS Institute Inc.

SAS is a registered trademark of SAS Institute, Inc. In the
USA and other countries, ® indicates USA registration.

Author: Ronald Fehd bus: 770/488-8102
Centers for Disease Control MS-G23

4770 Buford Hwy NE
Atlanta GA 30341-3724

ACKNOWLEDGMENTS

e-mail: RJF2@cdc.gov

This knowledge and wisdom was gained over the last decade
while | crunched numbers and read SAS-L. Many thanks to
the other SAS Whizards(tm) that contribute to SAS-L. You
know who you are. | couldn’t have done it without you.

This paper was typeset in KTEX. For further information
about using BTEXto write your SUG paper, consult the SAS-L
archives:

http://www.listserv.uga.edu/cgi-bin/wa?Sl=sas-1
Search for :

The subject is or contains: LaTeX

The author’s address : RJF2

Since : 01 June 2003

